[1] T. Frederikse et al., “The causes of sea-level rise since 1900,” Nature, vol. 584, no. 7821, Art. no. 7821, Aug. 2020, doi: 10.1038/s41586-020-2591-3.
[2] J. Hinkel et al., “Coastal flood damage and adaptation costs under 21st century sea-level rise,” Proc. Natl. Acad. Sci., vol. 111, no. 9, pp. 3292–3297, Mar. 2014, doi: 10.1073/pnas.1222469111.
[3] A. Hu and S. C. Bates, “Internal climate variability and projected future regional steric and dynamic sea level rise,” Nat. Commun., vol. 9, no. 1, Art. no. 1, Mar. 2018, doi: 10.1038/s41467-018-03474-8.
[4] Fox-Kemper, B., H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, and R. E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J-B. Sallée, A. B. A. Slangen, Y. Yu, “Ocean, Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.,” 2021.
[5] R. Almar et al., “A global analysis of extreme coastal water levels with implications for potential coastal overtopping,” Nat. Commun., vol. 12, no. 1, p. 3775, Jun. 2021, doi: 10.1038/s41467-021-24008-9.
[6] A. Storto et al., “Ocean Reanalyses: Recent Advances and Unsolved Challenges,” Front. Mar. Sci., vol. 6, 2019, doi: 10.3389/fmars.2019.00418.
[7] S. Dangendorf et al., “Persistent acceleration in global sea-level rise since the 1960s,” Nat. Clim. Change, vol. 9, no. 9, Art. no. 9, Sep. 2019, doi: 10.1038/s41558-019-0531-8.
[8] C. R. MacIntosh, C. J. Merchant, and K. von Schuckmann, “Uncertainties in Steric Sea Level Change Estimation During the Satellite Altimeter Era: Concepts and Practices,” in Integrative Study of the Mean Sea Level and Its Components, A. Cazenave, N. Champollion, F. Paul, and J. Benveniste, Eds. Cham: Springer International Publishing, 2017, pp. 61–89. doi: 10.1007/978-3-319-56490-6_4.
[9] R. P. Raj et al., “Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period,” Remote Sens., vol. 12, no. 17, Art. no. 17, Jan. 2020, doi: 10.3390/rs12172837.
[10] S. Dangendorf, T. Frederikse, L. Chafik, J. M. Klinck, T. Ezer, and B. D. Hamlington, “Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level,” Nat. Clim. Change, vol. 11, no. 6, pp. 514–520, Jun. 2021, doi: 10.1038/s41558-021-01046-1.
[11] C. W. Hughes et al., “Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast,” Surv. Geophys., vol. 40, no. 6, pp. 1467–1492, Nov. 2019, doi: 10.1007/s10712-019-09535-x.
[12] P. Prandi, J.-C. Poisson, Y. Faugère, A. Guillot, and G. Dibarboure, “Arctic sea surface height maps from multi-altimeter combination,” Earth Syst. Sci. Data Discuss., pp. 1–29, Apr. 2021, doi: 10.5194/essd-2021-123.
[13] R. M. van Westen and H. A. Dijkstra, “Ocean eddies strongly affect global mean sea-level projections,” Sci. Adv., vol. 7, no. 15, p. eabf1674, Apr. 2021, doi: 10.1126/sciadv.abf1674.
[14] D. M. Smith et al., “North Atlantic climate far more predictable than models
imply,” Nature, vol. 583, no. 7818, Art. no. 7818, Jul. 2020, doi: 10.1038/s41586-020-2525-0.
[15] K. Richter, R. E. M. Riva, and H. Drange, “Impact of self-attraction and loading effects induced by shelf mass loading on projected regional sea level rise,” Geophys. Res. Lett., vol. 40, no. 6, pp. 1144–1148, 2013, doi: 10.1002/grl.50265.
[16] T. L. Edwards et al., “Projected land ice contributions to twenty-first-century sea level rise,” Nature, vol. 593, no. 7857, Art. no. 7857, May 2021, doi: 10.1038/s41586-021-03302-y.
[17] T. Aadland and W. Helland-Hansen, “Progradation Rates Measured at Modern River Outlets: A First-Order Constraint on the Pace of Deltaic Deposition,” J. Geophys. Res. Earth Surf., vol. 124, no. 2, pp. 347–364, 2019, doi: 10.1029/2018JF004750.
[18] P. J. Gleckler, T. M. L. Wigley, B. D. Santer, J. M. Gregory, K. AchutaRao, and K. E. Taylor, “Krakatoa’s signature persists in the ocean,” Nature, vol. 439, no. 7077, pp. 675–675, Feb. 2006, doi: 10.1038/439675a.
[19] D. Swingedouw et al., “Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions,” Nat. Commun., vol. 6, no. 1, p. 6545, Mar. 2015, doi: 10.1038/ncomms7545.
[20] C. Deser et al., “Insights from Earth system model initial-condition large ensembles and future prospects,” Nat. Clim. Change, vol. 10, no. 4, pp. 277–286, Apr. 2020, doi: 10.1038/s41558-020-0731-2.